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All mechanical and civil engineering students take at least one course in mechanics of 
materials.  For many students though, this is their last formal course in the mechanics of 
deforming solid bodies.  Yet, it is increasingly likely for practicing engineers to be called 
upon to do finite element analysis (FEA) as part of their engineering activities. 
 
A thorough grounding in the theory of linear elasticity which underlies FEA, while 
advantageous, is less and less common.  These notes attempt to enable students with only 
a background in mechanics of materials to be more effective users of FEA. 
 
These notes are divided into the following Chapters: 
 
1. Essential Variables in Elasticity 
 
The key quantities of elasticity - displacements, strains and stresses - are defined so as to 
give the reader a physical intuitive feel for them. 
 
2. Formulation of an elasticity problem 
 
The essential elements in using elasticity are covered, including the stress-strain law, 
boundary conditions, and the field equations of equilibrium and compatibility. 
 
3. Finite Element Method 
 
The major steps in carrying out a finite element analysis are reviewed and their relations 
to elements of elasticity are pointed out. 
 
4. Stress Concentrations and Singularities 
 
Two major pitfalls in finite element analysis – stress concentrations and singularities – 
are discussed.  Since, displacement constraints so often lead to singularities, the means of 
applying minimal displacements to constrain a body which is otherwise under applied 
forces is also covered. 
 
5. Examining the Results of FEA 
 
Various methods used by experienced analysts to test the accuracy of finite element 
results are reviewed, including the use approximate analyses based on mechanics of 
materials. 
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1. ESSENTIAL VARIABLES IN ELASTICITY  
 
INTRODUCTION 
 
Consider a plate with elastic modulus E and Poisson ratio ν, which is subjected equal and 
opposite tensile forces P (not shown) in the horizontal direction acting at the ends. 
 
 
 
 

Figure of plate under tension 
 
 
 
 
 
 
 
You should already know from the study of axial loading how to calculate the tensile 
stress 
 

the strain 

the stretch 

 
and the transverse strain 

 
In these formulas, the cross-sectional area A is equal to wt. 
 
The axial loading could have actually been applied to the plate in a number of different 
ways.  Two very different types of loading – uniformly distributed and concentrated - are 
shown in the next Figure.  The different resulting shapes of the plate are also shown with 
the dotted lines.  Now, in either case we would have used the simple equations above 
(note that P would equal to the net force of the distribution on one end). In both cases, the 
simple equations give some correct information about what the plate experiences. 
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However, the two loadings do produce somewhat different results in the two plates.  The 
simple equations of axial loading do not give the whole story.  To distinguish between the 
two types of loading and deformation, we need a more complex theory: elasticity theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In both cases the plates are longer (δ > 0) and narrower (εt < 0), but the final shape is 
slightly different.  However, even these variables cannot be uniquely interpreted for the 
case of the concentrated applied load.  Is δ the stretch of the center-line joining the points 
of the force application or the top or bottom boundary of the plate?  Likewise, the plate 
width (w) narrows by different amounts depending on where you are in the plate.   
Clearly, the axial theory, which yields single values for stress, strain, stretch and 
transverse strain, fails to capture the spatial variation that is evident in the concentrated 
force loading. 
 
In elasticity, we acknowledge that each part of the plate may be experiencing a different 
mechanical state.  Surely, three small elements, one at the center of the plate, one just 
where the load is applied and one in the upper right corner are undergoing very different 
mechanical states.  In elasticity, we define the quantities that enable us to describe a 
mechanical state that varies at every point in the body.  The essential quantities of 
elasticity are: displacement (motion of a point), strain (stretching of a small line segment 
through a point) and stress (force per unit area transmitted through an internal surface at a 
point).  Since these quantities vary from point to point, they are able to capture the spatial 
variation that distinguishes the two loadings. 
 
DISPLACEMENT 
 
The most fundamental and simplest aspect of the mechanical state to describe is the 
displacement or motion.  Under the action of the loading, each point of the body moves to 
a slightly different position.  The displacement or change in position along the x-axis is 
denoted by ux.  Displacement has units of length (e.g., m, cm, in.).  The displacement or 
change in position along the y-axis is denoted by uy.  Each of the displacements has a 
magnitude and a sign. If ux is positive, then the point moves in the positive x-direction 
(relative to its initial position) and similarly for uy. 
 

Load applied 
uniformly each end 

Load applied at a 
single point each end
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We have identified six points in the body.  Their positions prior to the application of the 
load are labeled as A, B, C, D, E and F.  When the load is applied (and kept acting on the 
body), each of these points moves.  The positions of these points while the plate is 
stretched are A’, B’, C’, D’, E’ and F’ (of course, A moves to A’ and so forth). 
 
 
 
 
 
 
 
For each the points, here are the signs of the displacement.  Check each one to make sure 
that it makes sense to you. 
 
A:  ux < 0, uy > 0 
B:  ux < 0, uy = 0 
C:  ux < 0, uy < 0 
D:  ux > 0, uy > 0 
E:  ux > 0, uy = 0 
F:  ux > 0, uy < 0 
 
You might also notice that ux is the same at points A, B and C.  By contrast, for the case 
of loads being applied at a single point at each end, the displacement ux at B is more 
negative than at A. 
 
It might worth pointing out that the same axial loading applied uniformly at the end to an 
identical plate could have resulted in the motion shown in the following figure. Here, to 
avoid cluttering the diagram, we only label the final positions D’, E’ and F’.  In this case 
the point A does not move, points B and C move in the negative y direction to B’ and C’ 
respectively (they move down by different amounts).  
 
 
 
 
 
 
 
Now the displacements have the following signs: 
 
A:  ux = 0, uy = 0 
B:  ux = 0, uy < 0 
C:  ux = 0, uy < 0 
D:  ux > 0, uy = 0 
E:  ux > 0, uy < 0 
F:  ux > 0, uy < 0 
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You can imagine that the same loading produces the same final shape in the two plates: 
the final widths and heights would be identical.  The differing displacements occur 
because the plates are restrained differently against movement as the load was applied. 
 
Strain 
 
The change in shape of a body is fully described by the displacements at every point.  
However, displacements do not directly describe the deformation.  We now consider the 
strain, which is a local measure of deformation. 
 
Consider a body, such as the plate above, prior to being loaded.  Etch a straight segment 
in the body.  When forces are applied to the body the segment gets longer, shorter or 
stays the same length.  (The segment also moves and rotates.)  The change in length is 
related to the displacements at the two ends (just as the stretch δ of a bar under axial 
loading is related to displacement u at the ends). 
 
 
 
 
 
 
 
 
 
 
 
 
 
The strain of the segment is defined by  

 
The strain at this point, in this direction, is defined as the above ratio in the limit of 
segment becoming very (infinitesimally small). 
 
It is important to recognize that for the same body, same loading and same point, 
segments of different initial orientations will have different strains.  In principle, we 
might be interested in the strain at any initial orientation. 
 
Fortunately, it turns out that the strains of segments of different orientations at the same 
point are related to one another.  In fact, if you know the strains of segments with three 
distinct orientations, then you can find the strain for any other orientation.  In practice, we 
set up a set of x-y axes.  Then, the strain for any orientation relative to these axes can be 
found if the following three strains are known: 

Original configuration of 
plate with segment etched 

Plate deformed with etched 
segment shown as stretched 

lengthoriginal
lengthinchangestrain =
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The strain of a segment originally along x (denoted by εx) 
 
The strain of a segment originally along y (denoted by εy) 
 
The shear strain of a pair of initially perpendicular segments, one originally along x and 
one originally along y (denoted by γxy).  The shear strain is the change in this initial right 
angle, as measured in radians. 
 
We illustrate the definitions by considering a pair of lines that are perpendicular before 
the load is applied. 
 
 

 
 
 
 
 
 

 
 
 
 
The signs of these strains are important.  If the segment originally along x gets longer, 
then εx > 0; if it gets shorter, then εx < 0, and if it remains the same length, then εx = 0.  
The same convention for signs applies to εy.  If the initial angle becomes < 90, then γxy > 
0; if this angle becomes > 90, then γxy < 0; if this remains a right angle, then γxy = 0. 
 
In summary, the three strains εx, εy, and γxy fully describe the state of strain at a point.  
They describe how a tiny square located at the point in question becomes distorted.  
These three strains also allow one to calculate the strain of a segment of any other 
orientation (although we have not shown how this is done). 
 
Here is an example that illustrates the ideas of displacement and strain. Consider a body 
onto which a 1 mm by 1 mm square is etched with lower left corner initially located at 
the point (x,y) = (50,60).  All coordinates are in millimeters.  Under the action of the 
loads on the body, the four corners move to the points shown. 
 
 
 
 
 
 
 
 
 

Configuration of pair of 
segments as deformed  

Change of this 
segment’s length 

controls εx 

Change of this 
segment’s length 

controls εy 
 

Change of this angle 
controls γxy 

Pair of segments 
before deformation  

x  

y  

x  

y  

A: (50,60)  B: (51,60) 

D: (51,61) C: (50,61)  

A’: (54,62) B’: (55.001,61.997) 

Positions of element corners 
when body is undeformed 

Positions of element corners 
when body is deformed  

D’(?)  
C’: (54,62.998)  
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Here are the displacements at the four corners: 
 
A:  ux = 4, uy = 2 
B:  ux = 4.001, uy = 1.997 
C:  ux = 4, uy = 1.998 
D:  ux = 4.001, uy = 1.995 
 
Here is the final shape again, this time with the dimensions (in mm) indicated. Recall this 
was originally a 1 mm by 1 mm square. 
 
 
 
 
 
 
 
 
The strain εx is found from the change in length of the segment AB.  One can use the 
Pythagorean theorem to find the final length of AB; the sides of the triangle are .003 and 
1.001. Using a calculator, you will find that this final length is 1.001.  The small rotation 
of AB contributes insignificantly.  The motion of B along the direction of AB contributes 
to the change in length while the motion of B perpendicular to AB does not contribute.  
So slight rotations of a segment do not affect the normal strain along the segment. 

  
 
The strain εy is found from the change in length of the segment AC.  (In this case, the x-
positions of A and C are unchanged, so there is no rotation to consider). 
 

 
 
You may recall that the change in length of a rod in axial loading could be related to the 
difference in displacement at its ends.  This idea applies here as well.  That is, we could 
find the strains of AB and AC in the following alternative way: 
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The segment AB rotates clockwise by 
 

 
The segment AC does not rotate, so the angle BAC in total increases by .003 radians.  
Therefore, the shear strain γxy = - 0.003. 
 
If we are really looking at very small segments coming off the point A, then the stretch 
and rotation of the segment CD is identical to that of segment AB.  This is because they 
are in the same initial orientation, and they are, essentially, at the same point (the 
segments are so small).  Likewise, the segment BD strains and rotates the same as 
segment AC.    Therefore, the point D is located at (55.001,62.995).  Since the segment 
ends always stay connected (e.g., A’B’ and A’C’ remain connected at A’), the square 
ABCD turns into a parallelogram A’B’C’D’. 
 
This idea of a parallelogram is very general.  If, before deforming a body, one etches a 
tiny square at any point and at any initial orientation, then that element will always 
deform into a parallelogram.  The particular shape and orientation of parallelogram will 
depend on: the deformation of the body, the point where the square is located, and the 
initial orientation of the square.  Seeing a square deforming into a parallelogram is a very 
useful way of visualizing strain at a point. 
 
Stresses 
 
Your experience so far with stress is likely to be based on the formulas you have used 
before, such as σ = P/A in axial loading or σ = -My/I in bending.  But, as you start to 
explore elasticity, you need a much better understanding of the concept of stress. 
 
It is useful to be able to think about stress in two ways: as it relates to the deformation, 
and as it relates to the applied forces. 
 
Stresses as related to deformation 
 
We have seen that a tiny square etched into a body deforms into a parallelogram when the 
body is loaded.  Imagine you were given the tiny square and told to deform it into such a 
parallelogram.  You would need to apply forces to the surface of the square.  Such forces 
also act on the small element when it is part of the body.  Internal forces must be acting 
on the square from the material surrounding the square to keep it in the deformed shape 
(the parallelogram).  The internal forces are shown in the following figure.  Stresses are 
these internal forces per unit area. 
 
 
 
 

003.0
001.1
003.0arctan =⎥⎦

⎤
⎢⎣
⎡
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Stresses as related to applied forces 
 
When forces are applied to a body, these forces are transmitted through the body.  These 
forces locally squeeze the material together, pull it apart, or shear it. 
 
To be specific, we need to focus on two clumps of material separated by a plane.  The 
edge of the plane is the line between the clumps.  The plane runs into the body 
perpendicularly to the drawing. These two clumps are in contact and when the body is 
loaded, the two clumps can exert forces on each other.  To reveal these forces, one needs 
to separate the clumps and then draw the equal and opposite forces. The material on each 
side of the segment may pull or push on the other side: this is normal stress – tension or 
compression.  The material on each side of the segment may tend to cause the material on 
the other side to slide one way or the other: this is shear stress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We say that these forces are transmitted through the plane between the clumps.   The size 
of the clumps is irrelevant.  The force is associated with the plane between them.  To 
visualize these forces in another way, imagine perforating sheet with small holes over a 
short length.  Then, when the loads are applied, if the tension across the perforation is too 
large, the perforated segment will pop open.  Of course, if the stresses are very large, this 
tear will propagate across the body.)  Whether the perforated segment pops open is a 
barometer for the tensile force acting across that segment. 
 

Element as 
undeformed 

Element as deformed, with 
forces on its faces that 

maintain deformed shape 

External forces 
on body 

Exploded view of 
clumps with forces 

between them Unloaded body with 
neighboring clump identified 
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We now define stress.  Consider a given point in a plate that is about to be loaded.  Now 
load the plate.  Consider an infinitesimally small surface at some orientation running 
through the point in question (which divides two clumps of material). As shown above, 
there are normal and shear forces acting across this surface.   The normal stress is equal 
to the normal force divided by the area of the surface.  (Even though the surface area is 
infinitesimal, so is the force; their ratio is a finite number.)  Likewise, the shear stress is 
equal to the shear force divided by the area of the surface.  The stresses will have units 
for force per area, such as N/m2.  
 
Even though we are considering a single body, with fixed loading and a fixed point in the 
body, it is important to emphasize that the normal and shear stresses depend on the 
orientation of the surface considered.  This can be seen from the case of a plate under 
simple tension.  Two surfaces are shown in the following figure; these surfaces are at the 
same point. Across one surface, which is perpendicular to the x-axis (parallel to the y-
axis), there is clearly a tension.  If we were to make a cut in the plate at that point parallel 
to that surface, the cut would pop open.  By contrast, if we were to make a cut along the 
second surface, which is perpendicular to the y-axis (parallel to the x-axis), nothing 
would happen.  Under this loading, there is no force acting across the second surface. 
 
 
 
 
 
 
 
 
 
 
The above description does not help us actually find the traction in practice, since we can 
rarely measure such a force directly.  The description just gives the definition for the 
stress across a plane. 
 

Body unloaded with 
segment perforated 

(weakened by holes)  

Loading of body causes 
perforated segment to 

pop open 

Body loaded in tension, showing two surfaces of different orientation 
through same point have different internal forces. 

There is force transmitted 
through this surfacex  

y  
No force transmitted 
through this surface 
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Since the stresses acting across different planes through a point are different, do we have 
go to the effort of re-calculating the stresses for all such orientations? 
 
The answer is no: It is turns out that we only need to know stress across two planes to 
find all the others.   This situation is somewhat similar to what we discussed for the 
strain.  Above, we stated that the strain of a segment of any orientation at a point can be 
found from just three strains (that is, strains of various orientations are not completely 
independent).  Well, in a similar manner, the stresses across any surface through a point 
can similarly be found from the stresses across just two perpendicular surfaces. 
 
In particular, consider a body under a given loading. And focus on a surface that is 
parallel to the y-axis (or perpendicular to the x-axis).  Across this surface there can be 
equal and opposite forces in the x-direction and equal and opposite forces in the y-
direction.  The equal and opposite forces in the x-direction acting across this surface are 
normal forces. The normal stress, or force per unit area, in the x-direction is denoted by 
σx.  If the stress is tensile, then σx is positive (compressive corresponds to σx negative).  
The equal and opposite forces in the y-direction acting across this surface are shear 
forces. The shear stress, or force per unit area, in the y-direction is denoted by τxy.  This 
shear stress acts on a plane with normal in the x-direction, and acts in the y-direction.  
When is τxy is positive, the forces act in the directions shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the same body, same loading and same point, but now a second surface through 
this point, that is parallel to the x-axis (or perpendicular to the y-axis).  The equal and 
opposite forces in the y-direction acting across this surface are normal forces. The normal 
stress in the y-direction is denoted by σy.  Positive σy corresponds to tension and negative 
to compression.  The equal and opposite forces in the x-direction acting across this 
surface are shear forces; corresponding to these forces is the shear stress  τyx.  This shear 
stress acts on a plane with normal in the y-direction, in the x-direction.  When is τyx is 
positive, the forces act in the directions shown. 
 
 
 

Body loaded with internal surface perpendicular to x-axis highlighted.  Stress 
components along x- and y-axes are defined in terms of the transmitted forces. 

τxy  
x  

y  

σx  

Surface of 
interest 



Copyright © 2005 Paul S. Steif 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If you know the quantities σx, σy, τxy and τyx at a point, then you can find the traction 
acting on a surface of any orientation  (you will learn how to do this later).  In fact, even 
these four quantities are not independent of each other.  Say, we zero in again on a very 
small square located at the point of interest, with sides aligned with the x- and y-axes.  
This is the bold hollow square in the diagram below.  Say someone gives us the quantities 
σx, σy, τxy and τyx at the point.  This means that we know the forces per unit area that act 
across the surfaces of the small element.  We can then isolate the square and draw a free 
body diagram of it.  On the surface of the element, we draw the forces (or actually forces 
per unit area) that are exerted by the surrounding material (the four shaded squares in the 
diagram below).  If we assume that all the stresses σx, σy, τxy and τyx are positive, then the 
forces are in the directions shown.  Notice that this square is so small that the forces 
acting across the right side are equal and opposite to the forces acting across the left side.  
That is, the left and right side are identical surfaces: they have the same orientation and 
they are essentially at the same point (since the square is very small).  The stresses are 
likewise the same for the top and bottom surfaces of the square. 
 
 
 
 
 
 
 
 
 
 
 
 
Consider now this square with all the forces acting on it.  The forces are actually equal to 
the stresses times the area of each surface, but all four surfaces have equal area (which 
might as well be one).  Is this element in equilibrium?  On the left face and right face σx 
acts equal and oppositely so they produce no net force.  Similarly, τxy on the left face and 

Body loaded with internal surface perpendicular to y-axis highlighted.  Stress 
components along x- and y-axes are defined in terms of the transmitted forces. 

τyx  

x  

y  σy  

Surface of 
interest 

x  

y  

σy  

τyx  

τyx  

σy  

τxy  
σx   

τxy  

σx  

Element to be focused on is in 
center.  Stresses are due to 

surrounding elements 

Stresses due to forces 
exerted by surrounding 
material on element of 

focus 
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right face is equal and opposite.  On the top and bottom, σy and τyx are equal and opposite 
and so produce no net force.  So the sum of forces on this element is zero. Consider, 
however, the moments.  τxy produces a positive moment about the z-axis, and τyx 
produces a negative moment about the z-axis.  These moments only balance if τxy and τyx 
are equal, which they must be. 
 
Therefore, since we have established that τxy = τyx, we only need to be considered about 
three stresses at the point, which we denote by σx, σy, and τxy.  From these one can, with 
methods to be developed later, determine the stress acting upon any other surface through 
the point.  Again, the stresses σx, σy, and τxy, are really just stresses on two particular 
planes.  Sometimes we can find σx, σy, and τxy from the loads using methods of 
mechanics of materials.  Other times, the loads may be so oriented, or the axes have been 
so chosen, that the stresses σx, σy, and τxy are not readily found.  However, there is 
nothing special about these three stresses.  If we find the stresses acting on two other 
planes, then we can always find the stresses acting on any additional planes.   
 
When we do an elasticity analysis or use the finite element method, we will define the 
body relative to x- and y-axes.  The results of the analysis will be two displacements ux 
and uy, three strains εx, εy, and γxy, and three stresses σx, σy, and τxy at every point.  In the 
case of the finite element method, you will find these same 8 quantities (ux, uy, εx, εy, γxy, 
σx, σy, and τxy) at each of the discrete points (nodes) that you or the program defines.  
This entire discussion presumes a planar (2-D) with forces in the plane.  If, instead, the 
problem is three dimensional, then there are 3 displacements, 6 strains and 6 stresses. 
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2. FORMULATION OF AN ELASTICITY PROBLEM 
 

 
INTRODUCTION 
 
We have already introduced the variables - displacements, strains and stresses – which 
elasticity theory uses to describe a deforming body.  Converting a physical situation in 
which stresses or deflections are of interest into an elasticity problem involves the same 
types of steps as for mechanics of materials.  One needs to describe: 
 
 the shape(s) of the deforming body or bodies. 

 
 the material properties of the deforming body or bodies. 

 
 the loads that are acting on the bodies and/or the constraints on the motion of the 

deforming bodies. 
 
Shape 
 
To describe the shape, one usually needs to specify the bounding lines or surfaces of the 
body. While this is sometimes time consuming and tedious to do, it is conceptually 
straightforward.  Often, the challenging part is deciding just how much of the original 
bodies one should analyze.  This skill, that of modeling to reduce a complex physical 
problem into one suitable for analysis, is developed over much time. We will not delve 
into this issue here. 
 
Materials 
 
When we are considering an elasticity problem, the material properties are those which 
relate stress and strain.  We describe this now in some detail.  
 
You studied axial loading in Mechanics of Materials.  This loading is depicted below. 
 
 
 
 
 
 
 
 
 
 
 
 
You learned that the stress is the axial force divided by the cross-sectional area (wt).  The 
strain is the change in length divided by the initial length L.  A layman’s terms, stress is 

L
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how hard you pull on something and strain is how much it stretches.  The intrinsic 
stiffness of the material controls how hard you must pull on something to get it to stretch 
a given amount. 
 
The intrinsic stiffness of the material is captured by the elastic modulus or Young’s 
modulus E.  E is dependent on the material; materials such as steel, polyethylene, and 
natural rubber all have very different elastic moduli.  However, the elastic modulus is 
independent of the size of the material or the forces acting upon it. 
 
In studying mechanics of materials, you probably only considered stress acting in one 
direction (say, uniaxial tension).  The axial and the transverse strain were related to that 
stress through the Young’s modulus E, and the Poisson ratio ν.  Here we present the 
relation between stress and strain assuming normal stresses acts in both the x- and y-
directions. 
 

EE
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EE
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To see that this makes sense, imagine only the stress σx is non-zero.  Substitute σy = 0 in 
the above equations.  Then, the strain, εx, which is parallel to σx (the axial strain), is 
related to σx by E.  Likewise, the transverse strain εy, is related to the axial stress σx by ν 
and E. These equations also make sense when σy is non-zero (σx = 0).  In that case the 
axial strain is εy and the transverse strain is εx. 
 
This relation states that the strains due to σx and σy acting simultaneously are just equal 
to the sum of the strains when σx and σy act individually.  It is important to recognize that 
you can have stress in one direction, but no strain in that direction.  Or, you can strain in 
one direction, but no stress in that direction.  This is because both stresses can produce 
both strains and hence they can counteract one another. Here is an example of the stresses 
counteracting each other.  Say that E = 200 GPa and ν = 0.3. 
 
 
 
 
 
 
 
 
 
 
 
 

x  

y  

σy = 100 MPa 

σx = 30 MPa 
σx = 30 MPa 

σy = 100 MPa 
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In this case, the strains are  
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So the strain εx due to the two stresses cancel. 
 
In Mechanics of Materials you have studied shear stress and shear strain.  For most 
materials, there is no intrinsic direction in the material.  Materials with no intrinsic 
direction are called isotropic.   (Wood with its grain and some fiber-reinforced 
composites are examples of materials that are not isotropic, but anisotropic.) 
 
For isotropic materials, normal stresses are related to normal strains and shear stresses are 
related to shear strains.  Normal stress σx produces no shear strain γxy, and the shear stress 
τxy produces no normal strain εx (or εy).  Therefore, the relationship you derived in 
Mechanics of Materials, namely τ  = G γ, still holds.  We use this same relationship 
except we use the notation τxy for τ and γxy for γ.  Therefore, the stress-strain relationship 
for shear stress and strain is γxy = τxy/G.  This is illustrated below. 
 
 
 
 

 
 
 
 
 
 
You may have learned before in mechanics of materials that E, ν and G are related for 
isotropic materials.  This relation is: 
 
 

E = 2G(1+ν) 
 
Therefore, you really need to specify only two material properties.  In most finite element 
programs you are to specify E and ν. 
 
It is probably appropriate to mention here also that deciding on the values to use for E 
and ν is sometimes challenging, depending on the material. 
 

γxy  

τyx  

τyx  

τxy  

τxy  
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Forces and Displacements on the Boundary 
 
As we have seen, the leap from mechanics of materials to elasticity involves a much finer 
grain description of what is happening in the body.  In elasticity, we look at 
displacements, strains and stresses at each point of the body. 
 
Elasticity likewise involves a finer grain description of external influences acting upon 
the body through its boundary.  Say a body is loaded and that the loads keep the body in a 
deformed configuration.  At each point of the boundary, there is some force per unit area 
acting upon the body.  This force could be zero, but may not be. Also, each point of the 
boundary has undergone some displacement in going from the undeformed shape (before 
loading) to the deformed shape (with loads acting).  This displacement could be zero. 
 
One important idea in elasticity is that you cannot specify the displacement and the force 
at a point on the boundary. To see this idea, consider a spring, with constant k = 20 N/cm, 
which is fixed at the left end. 
 
 
 
 
 
 
 
What can we say about the right end?  We can specify the force to have some value, say 
P = 40 N.  In that case, we would know the displacement to be u = 2 cm.  Or we could 
specify the displacement to have some value, say u = 3 cm.  In that case, we would know 
the force to be P = 60 N.  But, we cannot say P = 40 N and u = 3 cm, because they would 
obviously be inconsistent. 
 
While for this simple problem we would know how to pick P and u to be consistent, in 
the case of an elasticity problem in which we are loading a complicated body all around 
its body, we can almost never know how to make a force and a displacement consistent. 
For this reason, we cannot specify the force and the displacement in some direction at the 
same point of the boundary. 
 
On the boundary of a (two-dimensional) elastic body we actually are concerned about 
displacements in two directions and about forces in two directions.  Thus, we must 
specify the force or the displacement in each direction of the two directions.  However, 
the idea just discussed still holds: we cannot specify both and the force and the 
displacement in same direction. 
 
To summarize, we must prescribe: 
 
1. displacement in the x-direction OR force in the x-direction at each point along the 
boundary of the body 

P = 40 N 

u = 3 cm 



Copyright © 2005 Paul S. Steif 18

 
and  
 
2. displacement in the y-direction OR force in the y-direction at each point along the 
boundary of the body 
 
Here is an example that illustrates several possible boundary conditions. The body is a 
rectangular plate.  At the left, the body is fixed along two segments, but is otherwise free 
on that face.  There is uniform pressure acting on the right face.  Above and below the 
body the surface has a distribution of rollers.  Rollers make the normal displacement zero, 
but the tangential force zero. 
 
 
 
 
 
 
 
 
 
 
 
Here is how we translate these physical conditions into boundary conditions that 
elasticity theory understands.  
 
At the right: We are not specifying about the motion of this boundary or its 
displacements.  We are saying that there is a force per unit area of magnitude 100 MPa 
acting in the negative x-direction.  We are saying that there is a force in the y-direction 
on this face is zero.  So on this boundary we are prescribing force (or equivalently force 
per area) in both the x- and y-directions, but not displacements. 
 
At the top and bottom: Away from the rollers, the surface is free: the force in x and y 
directions is zero (the displacement is free to be whatever it wants to be).  At the rollers 
the vertical displacement uy = 0, and the force in the x-direction is zero.  Notice that there 
will be a force in the y-direction and there will be displacements in the x-direction, but 
we don’t know them in advance.  
 
At the left: Where the boundary is fixed, the displacements are zero.  Elsewhere on the 
boundary, the forces are zero.  
 
 
 
 
 
 
 

body 

y 

x 
100 MPa 
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The body is redrawn with the boundary conditions labeled. Notice that the condition of 
specifying the force on the right surface is equivalent to specifying two of the stress 
components, σx and τxy.   Likewise, to the right of the rollers on the top and bottom 
surfaces, where the forces are zero, this is equivalent to saying that two of the stress 
components σy and τxy are zero.    To remind you, the stress components are drawn on an 
elementary square.  Also, a small square is drawn at the top and right boundaries so you 
can see which components are acting on those faces. 
 
 
 
 
  
 
 
 
 
 
 
 

y 

x σx 

σy 
τxy

σx = -100 MPa 
 
τxy = 0 

{ 
{ 

ux = 0 
uy = 0 

σx = 0 
 
τxy = 0 

σy = 0,  τxy = 0 uy = 0,  τxy = 0

σy = 0,  τxy = 0 uy = 0,  τxy = 0
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St. Venant’s Principle 
 
One of the most powerful ideas in the mechanics of deformable bodies is a principle 
which is ascribed to St. Venant.  It is of great help in setting boundary conditions. 
 
When we introduced elasticity, we said that mechanics of materials differs from elasticity 
in that elasticity takes a much more fine-grained approach.  Elasticity considers 
displacements, strains and stresses in all directions at all points of the body. Also 
elasticity involves a much more detailed treatment of the loading of the boundary.  As we 
have said, either the displacement or the force must be specified in each direction at each 
point of the boundary.  This is a lot of information, information which we often don’t 
have. 
 
St. Venant’s principle is helpful in reducing the amount of information that we need to 
specify. Here is the principle: 
 
If you apply a force and/or a moment to some region of the boundary, then the stresses 
far from that region of the boundary don’t care exactly how you apply that force and/or 
moment. 
 
Here is an example.  Only part of the boundary loading of the body is shown.  Say you 
think that the real loading is best represented by a uniform distribution q shown on the 
left body.  St. Venant’s principle says that the stresses far from this part of the boundary 
will be essentially the same if the distributed force is replaced by a concentrated force P = 
qh.  This force must act at the point where the distribution was centered so that the 
concentrated force produces the same net moment about any point as the original force. 
 
The stresses are unaffected by the change in loading at points that are approximately 3 h 
or farther away from the region of loading, where h describes the region of the original 
loading. 
 
 
 
 
 
 
 
 
 
Provided you are prepared to forgo knowledge of the stresses right where the loads are 
applied, this principle allows you to be very flexible in specifying force boundary 
conditions.  
 
The stresses are unaffected by the change in loading at points that are approximately 3 h 
or farther away from the region of loading, where h describes the region of the original 
loading. 

h 
3h 

P = qh 
Stresses the same 
beyond region of 

radius 3h from load 

q Stresses the same 
beyond region of 

radius 3h from load 
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EQUATIONS OF EQUILIBRIUM AND COMPATIBILITY 
 
When you solved problems using mechanics of materials you used three principles.  One 
principle was the material law or stress-strain relation.  For the case of elasticity, we have 
discussed that above.  The second principle is mechanical equilibrium, that is the sum of 
forces and moments both equal zero.  The third principle is geometric compatibility, that 
is the geometric relations between the motions and the strains.  Elasticity also uses these 
principles, FEA which is based on elasticity uses these principles.  Unless you solve 
equations of elasticity directly, you probably don’t need to know how equilibrium and 
geometric compatibility are implemented in elasticity.  For completeness though, we 
present these equations below: 
 
Equilibrium When the stresses vary from point to point, they are in equilibrium with 
each other and with any forces applied on the boundary.  For three dimensional stress 
state, this results in 3 partial differential equations involving the 6 components of stress. 
 
When there is a planar state of stress (only σx, σy, and τxy), then there are only two such 
equations and they are as follows: 
 

 
 

 
Geometric Compatibility The strains are related to variations in the displacements. 
These relations generalize the basic relation from axial loading ε = δ/L and a similar one 
for shear strain. For displacements in three-dimensions, this results in 6 partial 
differential equations involving the strains and the displacements.  For a planar 
deformation, there are 3 relations between strain and displacement 
 

 
 
In total, for three-dimensional problems there are 15 equations for the 6 stresses, 6 strains 
and 3 displacements.  For a plane stress problem there are 8 equations for the 3 stresses 
(σx, σy, and τxy), 3 strains (εx, εy, and γxy) and 2 displacements (ux and uy). In addition, 
there are boundary conditions, which we have described above for the case of plane stress 
problems. 
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3. FINITE ELEMENT METHOD 
 
The equations of elasticity are partial differential equations that are to be satisfied at 
every point of the body.  Furthermore the displacements or stresses must satisfy specified 
values on the boundary.  Because the equations of elasticity are so difficult to solve, the 
finite element method has been developed to solve these equations on the computer.  The 
results of this method are stresses or displacements that are approximate relative to what 
elasticity would give. 
 
Very briefly, the finite element method solves these equations by breaking up the body 
into small, but finite regions.  The method presumes that the key quantities, 
displacements, strains and stresses, have a simple spatial distribution within each 
element.  For example, the stresses might vary linearly with position in each element.  
These key quantities are then chosen to satisfy the equations of elasticity approximately. 
 
Breaking up the body appropriately into a mesh of elements is important to getting good 
estimates of the stresses.  Most finite element programs have a variety of methods to help 
you do meshing.  In the end, though, the mesh will consist of a set of node points 
distributed around the body.  The node points will be connected by lines and the lines 
form the boundaries of the elements.  This is illustrated in the figure below. 
 
 
 

 
 
 
 
 
 
 

 
Below are the major steps in a finite element analysis. 
 
 
Define the Region   
This is describing the shape and position of the body. 
 
Define Material Properties 
 
Usually this includes the elastic modulus (E) and the Poisson ratio (ν), although other 
parameters could be of interest (such as thermal expansion coefficient). 
 
Define Type(s) of Element 
 
One must choose the type of elements that are to be used, which depends on the type of 
analysis.  One type of element differs from another insofar as the variables that it deals 

nodes 
elements 

Boundary nodes 
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with and how each variable varies spatially in the element.  For example, for doing a two-
dimensional elasticity analysis, in any particular finite element program there will only be 
one or two element types that is appropriate.  This step is unnecessary in elasticity and is 
peculiar to doing FEA. 
 
Define Mesh 
 
The body must be broken up into elements and nodes.  This step is unnecessary in 
elasticity and is peculiar to doing FEA. 
 
Define Loading  
 
Usually this involves describing the external influences across the boundary of the body 
(If gravity is important, this force acts at all points of the body, not just the boundary).  
External influences acting across the boundary are usually represented by specifying the 
displacement or the force over each node point on the boundary.  Sometimes a distributed 
force can be defined over a part of the boundary.  FEA has a default assumption on the 
boundary conditions.  If you specify nothing about the displacement ux at a boundary 
point, then that is equivalent to specifying the external force Fx applied to that point to be 
zero. The point is free to move in the x-direction.  If you specify nothing about the 
displacement uy at a boundary point, then that is equivalent to specifying the external 
force Fy applied to that point to be zero. The point is free to move in the y-direction.   
 
While finite element programs allow you to enter distributed loads (force per length or 
per area), it is sometimes useful to be able to convert a distributed load to forces at the 
nodes.  One way to do that is to associate a portion of the boundary with each node.  The 
net force from the distribution which acts over that portion of the boundary is applied to 
the node. 
 
This process is illustrated with the following example.  A distributed force of 100 MPa 
acts on the right boundary of the body shown.  Say the body is 1 cm thick.  Say the body 
is broken into elements, with four elements along the right boundary.  We associate with 
each of the boundary nodes a certain area of the right boundary.  The middle three nodes 
each has 4 cm of area, and the nodes at the top and the bottom have 2 cm of area.  The 
areas associated with two of the nodes are highlighted in gray. 
 
For each node, the force is the force per area multiplied by the area associated with that 
node.  This means that the corner nodes (at the top and bottom) have (100x106)(.02)(.01) 
or 20,000 N of force.  The three other nodes have (100x106)(.04)(.01) or 40,000 N of 
force.  Notice that the total force on the nodes is 3(40,000)+2(20,000) = 160,000 N.  This 
agrees with the total applied force of (100x106)(.16)(.01). 
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Request Solution  
 
When doing FEA, one usually just pushes a button which solves the problem that has 
been specified.  This solves the equations of elasticity approximately.  
 
Inspect Results  
 
When doing FEA, one can view the results in a variety ways. 
 
 
More on Meshing  
 
As mentioned above, the finite element method solves the equations of elasticity 
approximately.  How good is that approximation?  It depends on the elasticity problem, 
and it depends on the mesh.  There are some elasticity problems which can never be 
solved with FEA; this is discussed later in the chapter on Stress Concentrations and 
Singularities.  For problems with no singularities, FEA is capable of offering estimates of 
stress that are comparable to those given by elasticity. 
 
As we said above, FEA works by assuming an approximate variation of stress over each 
element, for example a linear variation. FEA gives the most accurate answers if the actual 
stress varies over the element in the same way as assumed by the element.  So if the 
stress actually varies linearly with position (as it does in pure bending), then FEA with 
elements assuming a linear variation in stress will approximate the actual stress field 
exactly.  Under most loadings, the stresses will vary in a more complex way.  So how can 
FEA approximate this accurately? 
 
Consider a general function y(x) that is continuous and smooth.  If you look at y(x) over a 
small enough region, y(x) can be approximated by a linear function (using the 
derivative).  This means that if the elements are taken to be small enough, so the stresses 

(100x106)(.02)(.01) 
 = 20,000 N 

16 cm 100 MPa 

(100x106)(.04)(.01) 
 = 40,000 N 

4 cm 
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locally within the element are nearly linear, then FEA can approximate the stress 
distribution.  Now, finite element analysts take a much simpler approach.   They often 
sense where the stresses will be varying rapidly with position, and they put more 
elements there.  Stress concentrations are just such regions where the stress varies 
rapidly.  Where the stress varies slowly with position, fewer elements are used. 
 
Depending on the need, finite element analysts will do the calculations on the same 
problem using more than one mesh.  A coarse mesh would have fewer elements and a 
fine mesh has more elements; they might also use a medium mesh.  Sometimes the mesh 
is only refined in the region where stresses are known to be varying rapidly.  Typically, 
as the mesh is refined, the estimate of stress gets better. But, as the mesh gets very fine, 
the additional improvement becomes less.  Below we show the ideal variation in one 
stress component (σx) at one point as a function of the number of elements.  The finite 
element results would be the dots.  The curve is meant to represent some fit through the 
points.  It can be seen the stress changes with the number of elements, but that it appears 
to approach a value which would not change much more as the number of elements gets 
any large.  The stress at this point is said to converge. 
 
 
 
 

σx 

Number of Elements 
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4. Stress Concentrations and Singularities 
 
As has been pointed out earlier, a comprehensive theory commonly used to calculate 
stresses in bodies is the theory of linear elasticity.  This theory is confined to 
circumstances in which the material remains linear elastic and changes in the shape and 
orientation of the body are small.  Nevertheless, these assumptions are relevant to a vast 
array of situations commonly encountered in engineering. 
 
When there is a situation in which the assumptions of linear elasticity are valid, then 
linear elasticity provides the best predictions of stresses and deflection.  However, there 
are circumstances in which simpler theories, those of mechanics of materials (axial 
loading, torsion and bending), provide predictions of stresses and deflection that are as 
good as, or nearly as good as, those of elasticity. 
 
But there are also situations in which the stresses or deflections cannot be estimated by 
such simple theories.  Moreover, we usually cannot solve the equations of linear elasticity 
either (even though they would give the best answers).  That is because the equations of 
elasticity are complex partial differential equations.  This was the motivation for 
developing finite element analysis (FEA).  In finite element analysis we solve the 
equations of elasticity approximately.  Sometimes that approximation is very good and 
other times it is not. 
 
It is useful for you to have a sense of the relative accuracy of these different methods.   
 
 
 
 
 
 
It is rare on a daily basis that engineers doing stress analysis will do an elasticity analysis.  
They will either do mechanics of materials or FEA.  Nevertheless, it is useful to bear in 
mind that the stresses given by elasticity theory would be ideal, if the equations of 
elasticity could be solved. Further, the FEA results may be as good as the elasticity 
solution (as the ideal).  They are never better than the ideal, and sometimes, if you are not 
careful, they are much worse than the idea. 
 
For some problems, mechanics of materials, FEA and elasticity give answers that are 
essentially equivalent.  If you know this in advance, and as you gain experience you will 
be able to detect such problems, then you can just use mechanics of materials since it is 
the easiest to use.  There are some situations in which mechanics of materials, FEA and 
Elasticity give different answers, although if you are experienced and thoughtful in doing 
FEA, you can get the FEA to give answers that are close to those of elasticity.  In some of 
those situations, you can also use mechanics of materials in conjunction with Tables to 
get good estimates of the stresses.  Finally, there are other situations in which neither 
FEA nor mechanics of materials can give the results of elasticity.  In those situations, you 
need to be extremely careful in interpreting the FEA or mechanics of materials results. 

Increasing accuracy 

Mechanics of Materials FEA Elasticity 
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In the next Chapter, we outline situations in which mechanics of materials leads to 
reasonably accurate predictions of stress and deflection.  (We also show there how 
mechanics of materials can be used to give very rough estimates of these quantities, just 
to make sure you have not made some gross error in FEA.) 
 
Here we consider situations in which FEA or elasticity is necessary to arrive at estimates 
of stress.  Typically, these involve situations in which the stresses are locally 
concentrated, beyond the normal variations of stress found in mechanics materials. 
It will be important to distinguish between situations in which FEA, if used appropriately, 
can give good estimates of stresses, and those situations in FEA cannot.  FEA is a very 
powerful tool if used properly, but it can be misleading or dangerous in the hands of 
someone who is not fully prepared to use it. 
 
In considering situations in which stresses are concentrated, we distinguish between two 
types of situations: 
 

• Stress Concentrations and Singularities associated with Boundary Shape 
 

These concentrations are real and of genuine concern in design 
 

• Stress Concentrations and Singularities induced by loading or supports 
 

These are due to the idealized, unrealistic ways in which loads or supports 
are commonly applied in FEA 

 
 
Stress Concentrations and Singularities associated with Boundary Shape 
 
The influence of boundary shape on stresses is most easily discussed by reference to the 
problem of a bar with a transition from one width to another.  In particular, we call 
attention to portions of the boundary at which there is a transition from a straight segment 
of one orientation to a straight segment of another orientation. 
 
 
 
 
 
 
 
 
 
  
 
 

H h 

Straight portions 
Radiused transition 

re-entrant 

non-re-entrant 
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Near the transition, or corner, the body occupies a sector with some angle. The sectors are 
labeled in the figure.  When the sector occupies angle which is greater than 180°, the 
transition is considered a re-entrant corner.  When the sector occupies angle which is less 
than 180°, the transition is considered a non-re-entrant corner. 
 
At a re-entrant corner (angle > 180°), the stresses will be greater than if this feature were 
absent.  In this situation the stress would be greater than the simple axial loading 
prediction of P/ht (where t is the thickness into the paper).  By contrast, for non-re-entrant 
corners, the stresses are low (even lower than P/Ht here). 
 
The ratio of the actual maximum stress to the stress P/A is termed the stress 
concentration.  The stress concentration depends on the radius of the transition.  The 
smaller the radius, the more rapid the transition from one boundary to another, the higher 
is the stress concentrations.  It is widely known in mechanical design that one needs to 
consider reducing stress concentrations, particularly when the loads are alternating, that 
is, when fatigue is of concern.  Very sharp corners are to be avoided. 
 
One can talk theoretically about the radius of the transition going to zero, that is, an 
immediate transition from one orientation to the other or a truly sharp corner.  In this case 
the theory of elasticity says that the stresses are infinite. Of course, no corner is truly 
sharp; moreover, the assumptions of linear elasticity break down in such regions.  Thus, 
the predictions of infinite stresses are not really correct.  Nevertheless, there are advanced 
theories (fracture mechanics) that enable one to interpret the infinite stress in a 
meaningful way. 
 
Consider now the use of FEA to analyze such a transition.  When the radius is known, 
and one wants an accurate estimate of the stresses, then the right radius has to be included 
in the finite element model.  Also, a sufficient number of mesh points must be placed 
around the transition. 
 
On the other hand, it is sometimes very convenient to ignore the radius and set up a finite 
element model with the two boundaries meeting at a point.  The FEA results near the 
transition will be completely unreliable.  Elasticity theory, which FEA is trying to 
approximate, says that the stresses are infinite at the corner.  But, FEA always gives finite 
stresses.  Rather than converge, the FEA stresses at the corner will simply continue to 
increase as more mesh points are placed near the transition.  Therefore, one has to 
recognize such situations in which the FEA results cannot offer good estimates of 
stresses. 
 
Concentration/singularity due to Loading 
 
We have introduced St. Venant’s principle earlier in the chapter on formulation of 
elasticity problems.  It states that the stresses far from region of load application are 
dependent only on the load, not on the precise way in which the loads are applied.  
However, the stresses in the immediate vicinity of load application are dependent on how 
the loads are applied.  If the force is applied over a smaller area then the stresses locally 
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will be higher than if the load area is larger (see left end of diagram below).  If the force 
is applied at a single point (see right end of diagram below), then according to elasticity, 
the stresses at that point are infinite.  Of course, in practice a force cannot be applied at a 
point. 
 
 
 
 
 
 
 
 
Unfortunately, in FEA you can apply a force at a single node.  Of course, FEA will 
always report finite stresses at any point.  But, if you refine the mesh, and continue to 
apply the force at just one point, the stresses there will continue to get larger.  That is, the 
solution will not converge.  Here are two ways you can deal with the issue 
 

(i) Apply the force at one point and ignore stresses anywhere near that point. 
(ii) Decide that the force is actually applied over a finite physical dimension (a 

length in a 2-D problem or an area in a 3-D problem).  As the mesh is refined, 
the force continues to be applied over the same length, although the number of 
node points covering the loaded length or area will increase.  In this way, the 
stresses will converge to definite values. (One additional condition is 
mentioned below). 

 
In general, you should not presume that stresses are very accurately predicted by FEA in 
the region of load application.  It is difficult usually to know precisely how forces are 
actually applied.  There are theories to find stresses where two bodies contact one 
another; also one can sometimes use FEA to explicitly model the contact between bodies, 
though this is, at present, done only by very experienced FE analysts. 
 
We have agreed that a force applied at one point gives unrealistically high stresses, which 
you can simply ignore.  However, if you wish to apply a somewhat more realistic 
loading, it is common to treat a force as uniformly distributed.  Two points should be 
made in this regard. 
 

(i) When two smooth bodies are pressed against one another so that the contact 
area increases with increasing contact force, the force is not uniformly 
distributed (see notes on Contact Stresses).  In fact, a uniform force 
distribution rarely captures accurately a real distribution 

 
 
 
 
 
 

P 
P 

Stress here equals P/A 

Cross-sectional 
area A 

Stress at ends not  equal to P/A 

Stress is not uniform here but maximum in the 
center in zero at the edges of contact region 
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(ii) If the uniform force distribution acts perpendicularly to the surface, the 
stresses according to linear elasticity are finite, even at the edge of the 
distribution, where the stresses vary most rapidly.  This means that refining 
the mesh there will lead to converging stresses. 

(iii)  
 
 
 
 

 
(iv) If the uniform force distribution acts parallel to the surface, the stresses are 

singular at edge of the distribution.  Therefore, refining the mesh there will 
lead to stresses that continue to increase.  The problem is with a distributed 
tangential force that goes from some value abruptly to zero.  One must not 
accept the stresses at the edge of such a distribution. 

 
 
 
 
 
 
 
Concentration/singularity due to Supports 
 
Here we are referring to the specification of displacements on points of the boundary to 
simulate supports.  Specifying displacements can be very dangerous.  It is very easy when 
specifying displacements to construct a problem which has infinite stresses according to 
the theory of linear elasticity.  Of course, FEA will never give infinite stresses; but as the 
mesh is refined, the stresses given by FEA will continue to increase and not converge.  
Thus, it is critical to learn to use displacement boundary conditions properly.  We review 
several instances in which displacement boundary conditions lead to singular stresses 
 
The worst error which you can commit is prescribing displacements along a boundary 
which are discontinuous. 
 
 
 
 
 
 
 
 
 
In the example shown, the conditions would lead to a step in the boundary and a tear in 
the material.  It is unlikely that this represents the true situation; if such were the true 
situation, then linear elasticity would not be used to understand it. In fact, elasticity does 

uy = 0.01 uy = 0.02

stress singularity 
(at edges of distribution)

no stress singularity 

y 

x 

The dashed line shows the 
upper boundary with the 

step or discontinuity. 
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not admit such boundary conditions.  Don’t do this.  Unfortunately, an FEA program 
would not know that you are making this error, since it just accepts the displacement at 
each node, which can be different from one another.  As in the case of singularities 
studied before, the stress will grow indefinitely around such a point if the mesh is refined 
and the same jump in displacement is prescribed from one node to the next.  
 
Another dangerous situation is prescribing displacements over some part of a straight 
boundary, and then prescribing forces after that point.  An example of this is as follows.  
The right part of the figure shows that the discontinuity in the boundary condition is 
exactly what would occur if a relative stiff (rigid) material were to be bonded to the body 
of interest.  The displacement of the body where bonded to the stiff material is zero. 
 
 
 
 
 
 
 
 
 
Note that it would be just as bad if the displacement were something other than zero (or if 
it were ux) and if the forces were prescribed to be other than zero.  The problem is with an 
abrupt transition in the type of boundary conditions (from displacements to forces). 
 
It turns out that the stresses according to linear elasticity are singular at point of the 
boundary where the boundary condition changes from prescribed displacement to 
prescribed forces. So refining the mesh will lead to stresses that grow indefinitely. 
 
This situation is even more dangerous than the error of discontinuous displacements (an 
error that few would make), because this seems to be a wholly natural way of describing 
a body as being attached to another body over a part of its boundary.  To address this 
problem one can ignore the FEA stresses anywhere near the singular point (the transition 
from one kind of boundary condition to another).  This is easy to do if there is another 
point in the body where the stresses are known to be more critical. Alternatively, one can 
come up with a less severe boundary condition, for example involving only forces. 
 
Another case concerns displacements applied over an entire boundary of finite length (A 
to B or C to D in the diagram below).  The top and bottom surfaces are left free of forces.  
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Prescribing displacements perpendicular to the boundary (ux in this case between A and 
B) will lead to finite stresses, provided the displacements are not discontinuous as pointed 
out above.  On the other hand, prescribing displacements parallel to the boundary (uy in 
this case between C and D) will lead to singular stresses at the corners 
 
For those who want to know why perpendicular and parallel displacements produce 
different results at the corner, we offer an explanation.  First, since the top and bottom 
surfaces are free, the stress components σy and τxy must be zero.  Second, say you 
prescribe ux to be something (zero or anything else) on the side surface.  By doing so, you 
are saying that the normal stress σx on AB will be whatever it needs to be to keep ux at 
the prescribed values.  By saying nothing about uy, you are also implicitly saying that the 
vertical forces on AB are zero.  Since vertical forces on AB translate into τxy, you are 
saying that τxy is zero on AB.  Stresses are well behaved when the stress τxy is equal (in 
particular zero here) on the top and on the side as the corner is approached. 
 
On the other hand, if you prescribe uy to be certain values, you are saying that the y-
forces will be whatever they need to be to maintained at the prescribed values.  On a 
vertical boundary (AB or CD), y-forces translate into τxy, which consequently will not be 
zero.  This contradicts the value as the corner approached from the top, where τxy = 0.  
This discontinuity of τxy at the corner will lead in general to singular stresses. 
 
Since applying displacements is so dangerous, you could say: why not apply only forces 
on the boundary and no displacements?  Indeed this is the safest way of loading a body 
without producing singular stresses (provided one avoids the pitfalls of concentrated 
forces which were discussed earlier).  There are, however, two potential errors associated 
with applying only forces, neither of which is deadly: 
 

• You must make sure the forces are in equilibrium (the sum of forces and moments 
about some point are zero).  The FEA program will surely tell you there is an 
error if overall equilibrium is violated. 

• Assuming the forces are in equilibrium, they do determine the stresses and the 
strains everywhere (the shape of the deformed body).  However, the overall 
position and orientation of the body is left undetermined.  Some FEA programs 
will be unable to solve with only forces applied and will give you an error 
message (not always readily decipherable to the novice).  Other programs will 
solve the problem, although the displacements surely will be meaningless.  

 
The second potential error is eliminated if, in addition to the applied forces, you specify 
just enough displacements to unambiguously locate the body.  Here we discuss this 
important topic of applying the minimal displacement conditions to locate a body. 
 
Consider a body with forces applied to it.  The shape change is set by the forces, but the 
body can still undergo a rigid motion without changing the deformation.  The rigid 
motion of a body in the plane is described by three parameters, for example two 
displacements and a rotation.  We want to make sure that displacements have specified at 
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just enough points so that no additional rigid motion is possible.  At the same time, the 
specified displacements should do nothing to restrict the deformation imposed by the 
forces. 
 
Here are the rigid motions of a body in the plane 
 
(a) All points can move the same amount in the same direction (a rigid displacement). In 
a rigid displacement, all points have the same value of ux and the same value of uy. 
 
(b) The body can rotate rigidly about some point (a rigid rotation).  In a rigid rotation one 
point, say A, is fixed.  The theory of linear elasticity takes displacements to vary slowly 
with position (infinitesimally slowly); thus it applies only to infinitesimal rotations. 
Under such conditions, the displacement of another point, say B, is proportional to the 
distance from B to A.  The direction of the displacement of B is perpendicular to the line 
joining A and B.  Being perpendicular to AB is a consequence of the assumption that the 
rotation is infinitesimally small. 
 
 
 
 
 
 
 
 
 
As an example, consider a rectangular body.  For counterclockwise rotation about the 
point A, the displacement at B is in the positive y direction.  The displacement at C is in 
the negative x direction.  One is tempted to say that B moves a little in the negative x- 
direction and that C moves a little in the negative y-direction.  But these motions are 
small compared to the main motion when the rotation is very small.  We say that those 
displacements are zero.  Point D moves perpendicularly to AD and hence to the left and 
upward. 
 
 
 
 
 
 
 
 
 
Any planar rigid motion can be formed by combining three distinct motions: a rigid 
displacement along x, a rigid displacement along y, and a rigid rotation.  Thus, three 
pieces of information are sufficient to specify a rigid motion.   
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Consider again the body with the forces applied to it.  The shape change is set, but the 
body can undergo a rigid motion.  We now know that the rigid motion can be set if we 
know three pieces of information regarding the motion of the body. 
 
Since one typically cannot specify rotations in elasticity theory, but only displacements, 
in practice one specifies three displacements.  This typically would involve specifying 
two displacements at one point and one displacement at another point.  However are there 
are pitfalls to avoid: 
 

• The displacements must not restrict the strain of the body (which is dictated by 
the applied forces and the resulting stress distribution) 

 
• The displacements must not leave open the possibility of an arbitrary rigid motion 

of any kind.  (This was the whole reason that we took to studying minimal 
locating displacements in the first place.) 

 
Sometimes one hits both of these pitfalls at once.  We illustrate these ideas with several 
examples.  Take a rectangular body with forces applied to it (we don’t show the force, but 
they can be as complicated as you like, as long as they are in equilibrium). 
 
 
 
 
 
 
 
 
 
Case (1) : Say ux = 0 and uy = 0  at point A.  
This is insufficient information to locate the 
body.  The body can be rotated by any angle 
about the point A and still satisfy all the 
conditions.  This is the point of locating 
displacements. 
 
Case (2) : Say ux = 0 and uy = 0  at point A 
and uy = 0 at point C.  This is sufficient 
information to locate the body.  Compare 
with Case (1): we have prevented the 
rotation about A by saying that the point C 
cannot move in the y-direction.  That is 
exactly the direction in which C would 
move if there were a rigid rotation about A. 
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Case (3) : Say ux = 0 and uy = 0  at point A and ux = 
0 at point E.  This is sufficient information to locate 
the body. Note that point E would move in the x-
direction if there were to be a rigid rotation about A.  
These boundary conditions prevent such a rotation. 
 
Case (4) : Say ux = 0 and uy = 0  at point A and uy = 
0 at point E.  These conditions do not properly 
constrain the body; in fact, it is bad for two reasons.  
First, notice that the displacement uy is set to be 
zero at A and E.  This means that the line from A to 
E does not change length.  The forces applied 
dictate whether or not the line AE changes length.  
Locating displacements must not interfere with the 
applied forces, that is, they must not alter the 
deformation of the body.  Locating displacements 
should only control the placement of the body.  The 
second problem with these displacement conditions 
is that they still permit an arbitrary rotation.  That is, 
the body could rotate about A.  Under such a 
rotation, the point E would move to the left.  By 
setting uy = 0 at E, we have done nothing to prevent 
such a rotation. In Case (3) we prevented this 
rotation by setting ux = 0 at E.   
 
Case (5) Say ux = 0 and uy = 0  at point A and ux = 0 
at point C.  This is improper in the same way as 
Case (4) is improper.  We have fixed AC to have no 
change in length (while the forces may want it to 
change length).  Also, we have not prevented a 
rotation about A. 
 
Case (6) Say uy = 0 at points A, B and C.  This is 
improperly constrained, because we have not 
restricted displacement in the x-direction.  We have 
also forced the points A, B and C to be on the same 
line.  The forces might have dictated otherwise, so 
we have improperly interfered with the 
deformation. 
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uy = 0 

No Good: Body can 
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5.  EXAMINING THE RESULTS OF FEA 
 
There are many opportunities to make errors when using FEA.  For this reason, 
experienced analysts check their FEA results in a number of ways. 
 
Deformed Mesh 
 
Look at deformed mesh.  While you cannot judge whether the details are right, the gross 
change in shape or the deflection should be sensible.  In particular, look at those parts of 
the boundary where you set the displacements (to be zero or otherwise).  The deformed 
mesh should be consistent with those displacements that you intended to set. 
 
Boundary Values of Stress 
 
On those parts of the boundary that are supposed to be free, certain stress components, or 
combinations of stress components, should ideally be zero.  This was discussed in the 
Chapter on Equations of Elasticity.  Now, because of the approximate method used by 
most finite element programs, these boundary conditions involving force (or lack of 
force) may not be precisely satisfied.  (By contrast, when you prescribe displacements to 
be zero or otherwise, the finite element results will be precisely correct for those 
displacements.)  Nevertheless, the stresses (or appropriate combinations of stresses) at the 
free boundaries should be small at least compared with stresses generally prevailing in 
the body.  The magnitude of those stresses relative to the generally prevailing stresses 
gives some indication of the overall accuracy of the finite element solution. 
 
 
Mesh Refinement 
 
For some very simple problems, such as uniaxial tension, the finite element program can 
give correct results even with a very coarse mesh of few elements.  However, in general, 
one looks for the results for stresses and displacements to change as the mesh is changed.  
Now, we assume the problem being analyzed does not have a stress singularity (see the 
Chapter on Stress Concentrations and Singularities).  In this case of no stress singularity, 
the stresses should appear to approach values as the number of mesh points increases.  Of 
course, it is important for there to be many mesh points in the region of high stress 
gradients (Stress Concentrations).  Convergence of the stress is the way of discerning 
whether you have refined the mesh enough.  You could still have the wrong answer, if 
you incorrectly translated the physical problem into a finite element analysis (e.g., wrong 
boundary conditions) or if you did not input what you intended.  Thus, mesh refinement 
does not replace the checks discussed above and below. 
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Comparing Finite Element Results with the Results of Another Analysis 
 

 
Comparing the results of a finite element analysis with a simpler calculation is the most 
powerful way to judge whether finite element results are sensible.  The simpler 
calculation could be just a rough hunch as to the level of the stresses (based on overall 
loads and areas).  It could also be a full-blown mechanics of materials solution. 
Sometimes one expects the mechanics of materials solution to give just a crude prediction 
of stresses.  Other times, one expects the mechanics of materials solution to give highly 
accurate stresses.  A crude estimate can help to point out a gross error in the FEA input, 
which makes the stress incorrect by orders of magnitude.  Comparison with more 
accurate estimates may give an indication of more subtle errors in the FEA. 
 
How do you estimate stresses?  There is no single simple approach for estimating 
stresses.  Engineers who devote themselves to this subject hone their ability to do so over 
a lifetime.  Such engineers have familiarity with many exact and approximate solutions 
from elasticity theory, as well as mechanics of materials.  However, engineers with only a 
background in mechanics of materials are increasingly going on to use FEA.   The 
following is intended to be helpful to such engineers. 
 
We are presuming that the engineer can make use of the analyses of axial loading, 
bending, and torsion for various cross-sections.  Such analyses can give highly accurate 
results in certain circumstances and less accurate results in other circumstances. 
 
For the mechanics of materials theories to give highly accurate results for stresses, all the 
following conditions must be satisfied: 
 
 The portion of the body of interest is straight with an unchanging cross-section (a 

prismatic bar).  Alternatively, that part of the body must have a cross-section that 
changes very slowly as you move along its length. 

 
 The sides of the bar are unloaded or the loading of the sides of the bar is distributed, 

preferably uniformly or with a very gradually varying distribution. 
 
 The cross-section at which the stresses are being evaluated is “far” from the regions at 

which the loads are applied.  “Far” means that the cross-section is a distance of 
several “h” away from the loading, where h is a lineal dimension of the cross-section. 

 
 
Under the above conditions, one first must determine the axial (P) and shear (V) forces 
and bending (M) and twisting (T) moments which act at the cross-section of interest.  
These must be defined as acting at the centroid.  (Recall that when one replaces a loading 
by a statically equivalent force and moment, the moment depends on the point chosen; 
the forces will be independent of the point.)  One should find components of the force 
and moment parallel to and perpendicular to the normal to the cross-section. The force 
and moment normal to the cross-section are the axial force and twisting moment, 
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respectively. The force and moment parallel to the cross-section are the shear force and 
bending moment, respectively.  The following figure illustrates the definitions of the 
internal forces and moments. One then appeals to “simple” theories for the stresses in 
axial, shear, bending or torsion separately. 
 
 
 
 
 
 
 
 
 
Axial 
 
Since the axial force was taken to act at the centroid, it gives rise to a uniform normal 
stress, perpendicular to the cross-section, with value σ = P/A, where A is the cross-
sectional area. 
 
 
Bending 
 
For the bending moment, one uses the bending stress formula σ = My/I, where y is the 
distance from the neutral axis (the centroid), and I is the second moment of inertia about 
the centroid.  However, depending on the symmetry of the cross-section and the direction 
of the bending moment, one may need to resolve the bending moment into components 
along the two principal directions of the cross-sections.  (This somewhat advanced 
subject is found in most Mechanics of Materials textbooks; very often there is single 
bending moment and σ = My/I can be used directly.) 
 
Shear 
 
The stress distribution for shear force is more complicated.  The shear stress parallel to 
the shear force is on average equal to V/A, although it varies over the cross-section.  
Depending on the cross-section, the shear stress can have a maximum value that exceeds 
the average by, say, 50%.  (More details regarding this can be found in most Mechanics 
of Materials textbooks and in handbooks.) 
 
 
Torsion 
 
The stress distribution for twisting moment is simple if the cross-section is circular (solid 
or hollow); as learned in mechanics of materials courses, the shear stress is given by τ = 
Tρ/Ip, where ρ is the distance from the center, and Ip is the polar moment of inertia.  
Whenever the cross-section is other than circular, the solution becomes more complex 
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and is not treated in most Mechanics of Materials textbooks.  However, the solution can 
be found in textbooks on elasticity and in handbooks. 
 
Besides being able to calculate stresses for prismatic materials, it is important to know 
which of the six three-dimensional stress components correspond to the above 
calculations.  For axial and bending loads, the stress is the normal stress acting 
perpendicular to the cross-section.  In the case of a shear force, the maximum shear stress 
acts in the direction of V.  In the case of the twisting moment, the maximum shear stress 
acts tangential to the free surface. 
 
 
Crude Estimates of Stress from Mechanics of Materials 
 
Often the conditions set forth above are not satisfied.  The body is not prismatic, or there 
are concentrated lateral loads or the cross-section is not far from the applied loads. The 
mechanics of materials theories can still be applied, although their estimates of the stress 
may be more or less in error, depending on how seriously the conditions are violated.  
 
To apply these theories to a point in the body, imagine a plane intersecting that point and 
passing through the whole body.  It is preferable to choose the plane to be perpendicular 
to the free surface of the body, although that is often not possible.  This plane separates 
the body into two portions.  Imagine further that statics is used to find the net force and 
moment transmitted through that plane.  You could find this net force and moment if you 
knew the forces acting on one or the other of the two portions of the body.  One then 
proceeds to use the above theories of axial loading, bending, shear and torsion with the 
given loading and the cross-section that has been intersected. 
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