
Comparison of FEA and Predictions For Bar with Multiple Axials Loads

<u>Geometry</u>: Length = 60, Height = 4 <u>Material</u>: E =1000, v = 0.3. <u>Mesh</u>: 60 x 4 Linear Elements. <u>Loads</u>: Left end: $U_x = 0$ and $U_y = 0$. Right end: $U_x = 0$ and $U_y = 0$. Fx = -15 at (x,y) = (20,1), (20,2), (20,3) and Fx = -7.5 on (20,0), (20,4); Fy = 0 on all. Fx = 5 at (x,y) = (50,1), (50,2), (50,3) and Fx = 2.5 on (50,0), (50,4); Fy = 0 on all. (These nodal forces produce a net force of -60 and 20 at x = 20 and x = 50.)

FEA Results to Extract

• σ_x and Ux at (x,y) = (35,2)

Analyses to Compare with FEA Results

- Enter FEA stress σ_x and FEA displacement Ux at (x,y) = (35,2) into table.
- Solve axial loading problem, and predict stress and displacement at the point (x,y) = (35,2). Enter values into tables.

Numerical Results

Stress and displacements at $(x,y) = (35,2)$; Compare FEA results and predictions based on			
solving this problem by methods of axial loading			
σ_x (FEA)	σ_x (Axial loading)	Ux (FEA)	Ux (Axial loading)

Give your analysis of the problem using the methods of axial loading on a separate page that you attach. Show precisely how you find σ_x and Ux at (x,y) = (35,2).